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Semi-inhomogeneous solutions of the Kac model of 
Boltzmannn equations 

H Cornille? 
Service d e  Physique Thheorique, C E A  Saclay, 91 191 Gif-sur-Yvette Cedex,  France 

Received 8 August 1984, in final form 28 November 1984 

Abstract. We construct semi-inhomogeneous solutions of the Kac model,  for which the 
spatial dependence is only present in the odd-velocity part of the distribution. At ihe 
macroscopic level, the local density, the local energy, and  the associated current components 
are  determined and  discussed, while at the microscopic level there exist two different classes 
of distributions; as  a n  illustration we give two solutions explicitly. For one  class, the 
distributions relax towards a Maxwellian equilibrium solution and  they correspond either 
t o  a contraction o r  an  expansion, while for the other they go to  zero when the time increases 
to infinity. The space variable appears  linearly and,  in order to maintain the positivity, 
stays inside a finite interval. Assuming that the distributions are zero outside such intervals, 
a physical interpretation can be obtained for the whole space axis, provided appropriate 
elastic walls, sinks and  sources are  introduced. These boundary conditions seem more 
natural for the class of distributions with Maxwellian relaxation. 

1. Introduction 

It seems that the discovery of exact solutions can help our comprehension of the 
Boltzmann equation. 

In the past this was clear for the homogeneous Boltzmann formalism with Maxwell 
interaction. In that case (Bobylev 1976, b o o k  and Wu 1976), an  exact even-velocity 
distribution is known (called B K W  even mode). This BKW even solution exists also 
(Ernst 1981) for the simpler 1 + 1 + 1 dimensional (velocity U, time t ,  space x) Kac 
(1956) model; further other exact solutions have recently been obtained (Cornille 
1984a) for this model. 

i n  the inhomogeneous Boltzmann formalism with Maxwell interaction, there exists 
(Nikolskii 1964) a transformation generathg exact inhomogeneous solutions from 
homogeneous ones. Applying this method to the BKW even mode, Bobylev has deduced 
an associated inhomogeneous one which unfortunately goes to zero when the time 
goes to infinity. However, in the Maxwell interaction case and Nikolskii transform, 
Tenti and Hui (1979) have shown that other exact solutions can be generated, provided 
sources and sinks are introduced. Unfortunately all the inhomogeneous solutions built 
up  with this method cannot relax towards a Maxwellian equilibrium solution and tend 
to zero when t increases. In fact Nikolskii showed that they correspond to expansions 
(contractions) in a three-dimensional space. On the contrary for the Kac model, where 
the Nikolskii transform cannot be applied we have found and exact inhomogeneous 
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solution in a one-dimensional space (Cornille 1984b), which relaxes towards a Maxwel- 
lian. Trying to understand more deeply the origin of that solution it turns out that 
there exists a family of distributions which share similar properties at both the macro- 
scopic and the microscopic levels. 

Here, for the Kac model, we define an intermediate formalism called semi- 
inhomogeneous, where we assume that the position x enters only in the odd velocity 
part f- of the distribution function f (  U, t, .x) =f+( U, t )  +f-( P ,  t, x). Then the local 
density, the local energy and the associated current components satisfy a system of 
closed equations which depend on only three moments of the cross sections. Therefore 
these macroscopic equations can be solved with very few constraints on the microscopic 
interactions. At the macroscopic level we find two different classes of solutions for 
which we can at the microscopic level associate two classes of distributions f (  U, t, x), 
and the previously found solution (Cornille 1984b) belongs to one of them. 

In 5 2 we establish and study the macroscopic equations. The equation for the 
semi-inhomogeneous Kac model is: d,f+ v d f -  = col ( f )  and we first remark that the 
only possible stationary solutions are either f =  0 or a Maxwellian f= exp(--v'const). 
The local density N,' = j f  du, and the local energy Nr =If.' du are spatially uniform, 
while the associated current components J,, = j f u  du, J 2  = Jfc '  dv are linear in the 
x-space variable. They satisfy a system of closed equations which are integrable. The 
first determined macroscopic quantity is the local density. There exist two different 
classes of asymptotic behaviours: either N,T + 1 + O(exp( -const t ) )  when t tends to 
infinity or N,'+ O( t - ' )  corresponding to expansion (contraction) in one case and 
expansion in the other, For these two different classes of local densities, the stationary 
solutions are either Maxwellian equilibrium solutions or zero, also with two associated 
different classes of other macroscopic quantities N r ,  J,, .I2. For instance, for the 
average flow velocity Jo/  N,' we find for large t either .xO(exp( -const t ) )  or xt- '  showing 
that it becomes negligible in one case and not in the second. For the second class 
with inverse power-time behaviour, we notice the analogy wi th  the Nikolskii transfor- 
med solutions obtained for the Boltzmann equation with Maxwell interaction (Tenti 
and Hui 1979). It is also worthwhile noticing that the local energy Nr associated with 
a Maxwellian relaxation satisfied a second-order differential equation so that there 
exists the possibility of two different relaxation times. 

In  § 3, at the microscopic level, we construct a class of solutions f(v, t ,  x) with 
inverse power time dependence for N;, N2, which go to zero when t goes to infinity. 
For simplicity we assume that the v, t dependences are degenerate as a product of 
u-dependent functions by t-dependent ones. These distributions satisfy a specular 
reflection property at an  arbitrary x = x o  value and there exists an  interval x ~ x , - a ,  
xO+ a, where they are positive for all t and U values. 

In § 4, at the microscopic level, we consider the class of solutions associated with 
Maxwellian equilibrium distributions and for simplicity focus our attention on the 
previously determined one (Cornille 1984b). We sketch briefly its properties. Depend- 
ing on the scattering model, we have either confraction or expansion. A distinction 
also occurs depending on whether we have one or two relaxation times. There exists 
a specular reflection boundary at I = xO and we can still define a class of distributions 
f with positivity preserved for x inside an  interval (x0- a, x0+ a ) .  

The great defect of the distributions determined in § §  3 and 4 is that they necessarily 
violate positivity for x outside the above interval (.yo - a, x,+ a ) .  These intervals can 
be chosen arbitrarily large but must remain finite and our f solutions kiolate positivity 
when 1x1 + x. In  § 5 we define neu distributions f which are equal to .f for x inside 
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(xo-  a, xo+ a )  and zero outside these intervals. For these new distributions we have 
a,?+ vdrf = col(?) + G( S'+ S - )  and the Kac equation has two supplementary terms 
that we must interpret. Looking at the first supplementary term, we find that it 
corresponds to elastic walls. Its amplitudes remain fixed for the solutions of § 4 relaxing 
towards a Maxwellian, and decrease to zero like tC' for those of § 3. For the second 
term and Maxwellian equilibrium solution, it corresponds either to a sink (expansion 
case) or to a source (contraction case) and becomes negligible, going to zero exponen- 
tially in time. On the contrary for the solutions of B 3 (having f = 0 for stationary 
solutions), this term decreases only like t-' and remains important. 

2. Equations and solutions for the macroscopic quantities 

The inhomogeneous Kac model with f' = f ( u ,  t )  is 

d,fi( ti ) + Ua.J-( U )  = v dw d 8  v ( 0 ) ( f + ~ U ' ) . f ( w ' )  - . f + ( ~ ) f ( w ) )  ( l a )  

(16)  

_-  

J , f ( u ) =  v 11: dw J + n  d B ~ ( e ) ( f ( t ' ) ~ ( w ' ) - f ( U ) f i ( w ) )  
-7  

where f (  U )  means f+( U, t ) ,  f( c, t ,  x ) ,  v(0) = v(-8) is the cross section, U'= 
U cos 8 - U' sin 8, w' = t' sin 8 + w cos 8, and v is the collision constant. 

To start with, putting JrF = 0, we look at the possibile stationary solutions. There 
exists the trivial f' = f- = d solution and to search for non-trivial ones, we assume that 
7, v - ' f  belong to the L 2  spaces spanned by the Laguerre polynomials L ~ " ? ( u 2 / 2 )  
or f ( 2 n ) '  ' exp(v2/2)  = F', f ( 2 n ) '  ' = ( X ~ - X ) ~ - ' ' ~ U F -  with 

(2)  

Substituting into equations (1  a ) and (1 b )  we find 0; = 0 V n  orf = 0 while the vanishing 
of the collision kernel on the LHS of ( 1 a leads to the only so lu t ionf+  = exp( -const U ' ) .  

So the stationary solutions are either the trivial f = 0 or the Maxwellian solutions, we 
d o  not consider f = . f +  = const ti 0 which leads to an infinite local density. 

In this part of the paper the discussion arises at the macroscopic level and concerns 
hydrodynamical quantities: local density, local energy and the associated components 
of the current. Multiplying equations ( 1  a )  and ( 1 6 )  by I ,  U' and U, u3, respectively, 
and integrating over U we obtain both the equations of conservation and  associated 
equations 

F =  - LkTl ? I (  - -1 c'/2)(-1)"D:. 

J,(x, t )  = fc'" d c  i = 0, 2 I-: 
dJ0 = 4 7 ,  - 70)JON; d,J?= V ( ~ ~ - ~ ~ O ) J ~ N ~ ~ + ~ J ~ , N I ( T ,  - 7 3 )  (36)  

where the T~ are the moments of the cross section 7,, = 1:; v( 8)(cos 0)"' de, N:, N:  
being the local density and energy, while J ,  are the components of the current. The 
general solution of ( 3 a )  is 

J , ( x ,  r )  = ( x , , - x ) N ; ( r i +  P ; ( r )  i = 0 , 2  (4) 
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and for simplicity we restrict ourselves here to P; = O  ( 3 a )  and (36) can be rewritten 
with t-dependent terms 

a,N: = N ;  i = 0 , 2  ( 5 a )  

Equaticns ( 5 a )  and (56)  form a system of closed equatiors for N:, N ;  or J,. We 
remark that if f ( 2 ~ ) '  '+ exp(-v'/2) (Maxwellian equilibrium) then from their defini- 
tions, N:-+ 1 when t + m .  

There exists for N,' (56)  a general solution of exponential time type: 

1 - y  N+--- 0 -  1 
l + y  1-x 

y = cI exp(-c,t) 

c,, c,> 0 being arbitrary constants; and a particular one of power type 

-0 
2 1 

N ;  = 
v ( r 0 -  T I )  t +  to 1-x 

which when substituted into (56)  for N r  and into ( 5 a )  for N ;  lead to the complete 
determination of both N:, J ,  in the semi-inhomogeneous Kac model. For the local 
density associated to a Maxwellian equilibrium (6a ) ,  if c l > O  (c,  CO), N i +  l T  when 
t + a, d N i / d t  = 2c2y( 1 + Y ) - ~ ,  we have contraction (dilatation). For N i  + 0 given by 
(66) the associated stationary solution is necessarily f =  0. Now we study the corre- 
sponding N ; ,  

( i )  N l = ( 1  - y ) / ( l + y ) :  we h a v e J , = ( ~ - x ~ ) 2 c , y ( l + y ) - ~  and forthelocalenergy 
a second-order differential equation in the y variable 

( 7 a )  

and due to a( 0 )  > 0, then -$ < p < 2 .  Equation ( 7 a )  has two independent solutions 
N;] = 1 +XT Z,,y", N12 = y" " (  1 +E; & y n ) ,  analytic for lyl< I ,  the sets (G,,), (&)  
satisfying a three-term recursion relation. The general solution N:  + 1 when t + CC is 
a linear combination N l  = Nl1 + c,NT2. If p = 1, the general solution contains, as 
usual, a Ig y term. If p = 0 or  r1  = r3, the solution becomes N l =  const, + const,( 1 + y ) - ' .  
The only general constraint is NS>O leading to available cI, c2, c3 interval values. 
Once N t  is determined we deduce the second current component J 2 =  ( x , - x ) d , N ; .  

( i i )  N,' = 2[ U( r0 - T I ) (  t + to)]- '  leads for the general N: to a linear combination 
of two power-type solutions 

71 - T3  
p=-. 

T o -  TI 
2 p ,  = -( 1 + 2 p )  ( 1 + 4p2  - 2 0 p ) '  ' 

a( 0 )  > 0, the reality of pI  and the fact that N t  + 0 when t + a? (the g l y  possible 
stationary solution being f= 0) lead to the result pi < 0 if O <  p <g-J6. We notice 
that in both cases ( i )  and  (ii) the only microscopic constraint on a ( 0 )  enters into p 
defined in equation ( 7 a )  and (76).  
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Another interesting macroscopic quantity is the average flow velocity U o ( x ,  t )  = 
Jo(x, t ) /  N,' = ( x o  - x)a , ,  In N i (  t )  and we find for the above two cases: 

( i)  f- a Maxwellian U , = ( X , - X ) ~ C , ~ / ( ~  - y 2 )  = O(exp(-C,t)) 

(ii) f- 0 L' 0 -  - - ( x , - x ) / ( t + t , )  = o(t-').  

I-% I - x- 
( 8 a )  

( 8 b )  
1-X 1-x 

This is all that we can predict at the macroscopic level. It remains to show, at the 
microscopic level, that there exist CT( 0 )  interactions and solutions f (  U, x, t )  which 
satisfy these macroscopic conditions. Simple odd-velocity distributions f fulfilling 
the current relations (4) are provided with: 

(9)  ./-(U, x, r ) =  ( x o - x ) f ( v ,  t ) + g - ( u ,  t )  

and for simplicity we restrict our study to g-  = 0. 

3. Distributions relaxing to zero when t -+ m 

In this section we construct a class of solutions S ( v ,  t )  with inverse time dependence 
for N:, J,. Since we are not interested in the more general solution, for simplicity we 
assume that the f are degenerate, being the product of e-dependent functions F ' (  v )  
by functions of t. Our aim is to find, for a finite interval, let us say l X g - . x /  < a, that 
there exist both f (  t', t, x) > 0 V t ,  v and a(0)  > 0. At the beginning we d o  not assume 
any special symmetry for the cross section, which means that the odd moments of 
a( 0)  are different from zero ( T ~ ~ + ~  f 0). 

From the analysis of 8 2, it follows that at the macroscopic level we have: Nd = 

Jod;/d, with d:=]': F 'v 'dv,  d,=l: ,F-vi+'dc,  i = O , 2 ;  d d d i - d i d ;  a n d a t t h e  
microscopic level we have for the distribution: 

2[ V (  TO - TI ) ( t o  + t ,  )]- I ,  Jo = 2( x - xg)[ V (  70 - T I ) (  to + t N l  = N d d  T /  d :, J2 = 

Since N,' is decreasing, f corresponds to an  expansion case. However we must look 
at the positivity property of f :  From ( l o a ) ,  we show that i f f >  0 at t = 0 and x fixed, 
then f >  0 for all values of t. Firstly we remark that necessarily F' > 0 for all e values, 
otherwise F--( t') for either positive or negative tr values being negative, the bracket on 
the RHS of i 10a) will become negative. Secondly, in this bracket, the term proportional 
to F -  is strictly decreasing and its absolute value is maximum at t = 0. On the other 
hand, if for e, t fixed and IF-(v) l  f 0, we allow / .x-xo~ to become arbitrarily large, the 
bracket will become negative. In conclusion, if there exists an interval X E  
[Xo - a, x,,+ a ] ,  a > 0 with f >  0 at t = 0, then the positivity property of ,f is preserved 
for all t > 0 values. In this section we restrict x to stay inside such intervals and in 
5 5 discuss for x outside these intervals. 

Substituting f given by ( loa )  into the Kac equations ( I a ) ,  ( 1  b ) ,  leads to the a(  e ) ,  
e-dependent integral relations between F'/ d b  and F-/d, where r has disappeared. 
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d : ~ ~ F - ( u )  = a ( B ) F ( o ' ) F + ( w ' )  dw do. (10c) ss 
We do not discuss the general solution F' of ( loa) ,  ( l o b )  and (1Oc) fulfilling the 
positivity constraint on J For simplicity we further assume the symmetry a ( 0 )  = 
(T( n- - 0 )  or T, = 0, for m odd. Then (1Oc) becomes identically zero on both sides and 
we are left with only ( l o b )  that we substitute into ( l o a ) .  Finally f can be written in 
closed form as a functional of an arbitrary function F ' ( c ) :  

the second term of the bracket on the RHS of ( 1  1 )  being (x - x o ) F - (  u ) / d , .  We have 
two constraints on F': first it must be such that F--+O when v + O  and second 
IF-/F'I - 0 (or  const). The first condition leads to 

1 - 1  

- x  

27;' F'(wsin O)Ff(M~cos  O)a (e )dH 'dO-FFr (0 )d+=O.  
--T 

For the second we remark that if F' zi+= exp(-b,t12)a-2"- then 
5 F'( c ' ) F ' (  w')(T( 0 )  d 0  dw 2- exp( -b,,c')v-'"* and it follows that F' dominates at large 
L' if a+> -4. For instance very simple families are given by: F + ( u ) =  
exp(-bc2)(Z:+ ~ , , t l ~ ' ' - ~ ,  a, > 0, n,a > -4. Combining these two constraints we can 
obtain solutions f > 0 in ( 1  1 ) .  For example in figure l ( a )  we plot the v f ( u ,  r, x) 
relaxation curves for 

( 11') 

with bO=0.4121x10-',  a = $ ,  f o = I r  T , , = I  and ( . ( 0 ) = t ~ f [ s ( e - A , ) + S ( 0 + 8 , ) 1 ,  0 , =  
r / 4 ,  A: = 3n-14 and x - xo = 1. In  conclusion there exist distributions f (  t', t, x) > 0 for 
/x - xoI finite and such that f -  0 when f -+ X. The width of the interval / x  - xo/ < a is 
such that f >  0 V f ,  U depends on the model. For instance in figure l ( b ) ,  for the same 
example as in figure 1 ( a ) ,  we present in the x, U plane, the domain where f violates 
positivity for t = 0, I ,  . . . and we verify that the maximal domain is obtained for t = 0. 

F'( t') = expi-b,,u2)( 1 + U')-" 

4. Distributions relaxing towards a Maxwelllan 

An exact solution has recently been obtained (Cornille 1984b). In order to have a 
self-contained paper we start here, in the semi-inhomogeneous formalism, with slightly 
different initial assumptions and briefly present the arguments leading to its determina- 
tion. Assuming that S are products of a Gaussian exp( -v2/2A( t ) )  by L: polynomials, 
then from equation ( l ) ,  they necessarily are ao( r )  + a'( t ) u 2 / 2  for f' and a,( t ) u / J 2  
for f. Instead of cyo, a , ,  a', we can use the macr_oscopic quantities: a,= 
1.5 N ~ h - " '  -0.5 a' = N l A - s J 2 -  NlA-'", a ,  = 2 J 2  A-'I2a,Nof. It remains to 
determine A .  From the definition ( 3 a )  of the current components J,, it follows that 
J2 = 3JoA. Substituting this relation into equation (3) we find N ;  and a,N: in terms of 
A, N:: 

N l =  N ~ A + [ V ( T , - T ~ ) ] - ~ ~ ,  I n A  a,N; = 3Ad,N,'. 
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-6 -4 -2  0 2 4 6 

Figure 1. ( a )  Plot of vf( U, 1, x )  against U given in equations ( 1  1) and ( I  1 ' ) .  ( b )  Positivity 
domains in the x, U plane for different t values of uf( U, r, x)  given by equations ( 1  1 )  and ( 1  1'). 

We eliminate N :  and obtain a second-order differential equation for A, entirely 
determined when N :  is known: 

These results are general and do not depend on any particular choice of the local 
density. For instance for f having a Maxwellian relaxation or N :  = (1  - y ) / (  1 + y ) ,  
we obtain for A :  
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Let us define u2 = T? - T ~ ,  then in ( l a )  the coefficienis of the U' terms give: N;A-5'2 - 
N,'h-3'2 = c y 2 =  (A2vu2)- ' (8 ,  In A )  and a second relation N r  = NofA+(a2v)-18, In A. It 
follows that the cross section must satisfy a moments relation 

(126) u2- T ,  + 7 )  = 0 p = (+2(  70 - T I ) - '  E 10, 2[ 

and from A, N i ,  N ;  we determine the cy,( t )  and f: Choosing ( 6 a )  for N i ,  we get: 

(Equations similar to (12a)-(12c) for N i  in ( 6 b ) ,  violate positivity either for f or 
u( e)) .  Choosing A ( v )  + 1 when y + 0' in (12a) ,  then (27r)"'f tends td the Maxwellian 
exp(-v2/2) when t + m, As in (7a) ,  the general A solution is a linear combination of 
two solutions A = ( 1  + E r  any" )+  c3y!-'( I + X T  d,y"), F # 1, with the summations valid 
for l y / <  1, c3 being a constant, the sets ( a , , ( p ) ,  ( d n ( p ) )  satisfy a three-term recursion 
relation and  can be numerically computed. Here we restrict ourselves to C3 = 0 and 
for the study of the Tjon overpopulation effect of high-velocity particles at intermediate 
times (Tjon 1979) we define the reduced distribution F (  ti, t, x )  =f( U, t ,  x ) / f (  U, CC, x )  + 1 
when t -+ ix. For /u I ,  t large, F - 1 is approximated by a positive U, t function multiplied 
by sgn (1 - F ) .  Then independently of the initial conditions, the effect can occur only 
if the microscopic (+( 0 )  model satisfies p < 1 and  this is numerically observed. In 
figure 2( a )  we plot the relaxation curves for p = 0.25, c I  = -0.1, c2 = 1, c3 = 0, xo - x = I 
and ( + ( e ) = ~ . : p , [ s ( e - e , ) + s ( e + e , ) ] ,  COS & = - C O S  e2=Jp, p 2 = p , ( i - & ) ( 1 +  
<;)-I. In figure 2(b) ,  for the same example as in figure 2 ( a )  we draw in the x ,  U plane 
the domains where f violates positivity for t = 0, 1, 1.5, . . . and we still verify that the 
maximal domain is obtained at t = 0. For C3 = 0, new interesting features appear. 

Let us discuss the properties of the exact solution (12a),  (12b), (12c) which can 
be classified following the p values (or  the u(0) models). 

( i )  p > 1. The positivity o f f  at t = 0 requires C ,  > 0 (or y > 0).  Consequently N,' 
increases (see 5 2) corresponding to a contraction case. The standard continuity 
argument can be modified (Cornille 1984b) proving that positivity at t = 0 means 
positivity at t > 0 .  Consequently in the x ,  U plane, the domain violating positivity is 
maximal at t = 0 and !here always exists / x  - xOI < a such that f> 0 V t ,  U. The Tjon 
effect does not exist. 

(ii) p < 1. The positivity at t = O  requires C ,  < O  (or y < O ) ;  N,' decreases and  
consequently ( 5  2) we are in an  expansion case. However if the solution has two 
relaxation times, or C7#0, the positivity for all t values requires C3<0 (Cornille 
1984b). Consequently for C,  S 0 (see for instance the example of figure 2 )  there exists 
an interval / x o - x /  < a wi thy>  0 for all t, U values. The Tjon effect exists only if C3 = 0. 

( i i i )  /.L = 1. This corresponds to a transition where the fundamental solutions of 
the Fuchsian equation (12a)  have a In y term. The positivity of f for all t values 
requires C ,  > 0 (or y > 01, it corresponds to a confraction case and there exists / x o  - x /  < a 
with f > 0 V t ,  U. The Tjon effect does not exist. 

Finally we notice that the exact solution (12a) ,  (12b), (12c) can also be obtained 
from the differential Laguerre moments systems (Cornille 1984b), then giving up the 
search for closed solutions one could try to obtain other solutions of the differential 
systems not too far from &he present one. 

- 
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io) 1 f i v , t , x i  

L 1 a : 0 2 1 T O - T , : 0  2 5  
f ' :  c.:-o.2 C2.l c,:o 
f - :  d .I x,-x.1 

-40 -35 -30 - 2 5  - 2 1  -15 -10 - 5  0 5 IG 15 20 2 5  30  35 v 

I 

t - t ro  
a = 2.01 

xo+o xo+ l  x0+6 xo+8 x 

I 
Figure 2. ( a )  Plot ofj '(v, t , ~ )  against c, given in equations (12) .  ( b j  Positivity domains 
in the x, L' plane for different f values of f ( v ,  t, x)  given by equations (12) .  ( 2 ~ ) " ' f +  
exp(-u'/?). 

5. A physical interpretation c.f the solutions f( 0 ,  x, t )  

We start with the distributions of § §  3 and 4. f = f ( u ,  x, t )  = f ( u ,  t ) + ( x o - x ) f ( u ,  t )  
which satisfy the Kac equation: ( a ,  + ud,),f= col ( f ) .  We define a new distribution 
f = f e [ a 2  - ( x , - x ~ ] z  0 for Ix0-x/' < a2  and identically zeroforzoutside (xo- a, xo+ a ) .  
We find ( a ,  + ud,)f = col(f)  + u(St+ S - )  and obtain for the collision term two supple- 
mentary ones that we want to interpret: 

(13) us+ = vf+( U, t ) {  -6[x - ( xo + a ) ]  + S[x - (xo - a 111 
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us- = tif ( U, t ) a { 6[x - (xo + a) ]  + 6[x - ( x o  - a I]}. (14) 

In both cases, with Maxwellian relaxation or without, r( U, t )  dominates over f( U, t )  
for large t, whence the same result for US' compared with u s - .  

5.1. us+  
We recall that necessarily f (  U, t )  2 0 (otherwise adding f will lead td a violation of 
the positivity constraint onf ) ,  and UT has the sign of u. For x = xo+ a (or  x = xo- a ) ,  
we have a sink for v > 0 (or a source) and a source (or a sink) for u < 0. The amount 
of incoming and  outgoing particles being the same, US+ can be viewed as elastic walls 
at x = xo+ a. For large t we find: 

(i) f given by equations (12) and relaxing to a Maxwellian 

us' = L' e x p ( - u ' / ~ ) ( - 6 [ x - ( x o + a ) ] + ~ [ x - ( x 0 - a ) ]  ( 1 3 ~ )  
1-x 

the elastic walls are always present. 
( i i )  f given by ( loa )  and going to zero when t + oc 

{ -6[x - ( xo + a ) ]  + 6[x - (xo - a ) ] }  = O( 1 - l )  
2 F'( c )  us+ = 

d 0' ( To - 71 ( to  + t 1-x 

therefore US+ becomes smaller and smaller when t increases. 

5.2. VS 

A priori for u > 0 (or  U < 0) uf does not have a well defined sign. However for equations 
(12) it is positive in the contraction case and  negative in the expansion one. 

( i )  In the Maxwellian relaxation equations (12) 

the first bracket on the RHS is positive and U S -  has the sign of C,. If C, > 0, contraction 
case (or C ,  < 0, expansion case) then GS- is a source (or  a sink) at both x = xo* a, 
which disappears for large t :  

U S -  -- e x p ( - ~ ~ t ) [ 2 C ~ ~ , u ~  exp(-ti2/2)I{6[x - ( x o +  a ) ] +  6 [ x  - ( x o -  a)]). 
1 - X  

( i i )  In  the non-Maxwellian relaxation case ( l o a )  

the situation is different because OF-(  ti) for either v > 0 or u < 0 can change sign (for 
instance this happens for the example of figure l (a ) ) .  Consequently it is difficult to 
interpret this term physically. On the other hand it is never negligible compared with 
the elastic walls. 

In conclusion cS-, the source or sink term, is negligible compared with the elastic 
walls (S-/S' = O(exp(-C2t)))  in the case of relaxation with Maxwellian equilibrium. 
On the contrary the physical interpretation of US- is unclear in the non-Maxwellian 
relaxation and it always gives an important contribution (S-/S' = O( t - ' ) ) .  Similarly 
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the average flow velocity (see equations ( 8 ) )  decreases exponentially in the Maxwellian 
relaxation case and only like t - '  in the non-Maxwellian one. We can therefore expect 
that in a more realistic problem, with ordinary walls, there exist solutions looking like 
those with Maxwellian relaxation rather than the others. 

At the end we notice that the main difference between our solutions and the Nikolskii 
ones (besides the existence of solutions with Maxwellian relaxation) is that they really 
depend on three variables. On the contrary, inhomogeneous solutions deduced from 
homogeneous ones still depend on two variables. Can this semi-inhomogeneous formal- 
ism be extended to more realistic models is an open problem. 

Another interesting aspect of the Boltzmann equation is in the connection with the 
non-integrable equations. In the Maxwellian interaction formalism, equivalent two- 
dimensional nonlinear partial differential equations exist (Krook and Wu 1976) and  
the simple exact solutions appear as solitons and  bisolitons. A whole class of nonlinear 
non-integrable equations exist (Cornille 1983 and references therein) with common 
properties with the BE. Here we find exact three-dimensional solutions and it seems 
interesting to find and study the nonlinear equation associated with the Kac model. 
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